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The hydrodynamic theory of the resonant cylinder (Gans 1970) is extended to 
include the effects of a magnetic field parallel to the rotation axis. The linear 
response is modified by a change in boundary-layer suction and a change in the 
resonant length. These effects are of equal importance. The theory is valid for 
small container conductivity and for amplitudes such that the cube of the ampli- 
tude is less than the dimensionless precession rate. The importance of container 
conductivity is assessed. The free modes of the system are given in an appendix. 
These modes move both east and west. 

Experimental apparatus capable of producing magnetic Reynolds numbers of 
the order of 20 for indefinite lengths of time is described. The apparatus was used 
to assess the linear theory, though not designed for this purpose. Experiments 
beyond the range of linear theory are described. The results show finite amplitude 
effects similar to those previously observed in precessing spheroids in the absence 
of magnetic effects (Malkus 1968). Additional structure attributable to magnetic 
effects is observed. 

1. Introduction 
The only working homogeneous dynamo presently extant is the kinematic 

dynamo of the Herzenberg type built by Lowes & Wilkinson (1968). The mag- 
netic Reynolds number required to make it operate is of the order of 200. The 
magnetic Reynolds number in the earth is unknown, but probably lies between 
10 and 1000. 

Dynamically generated magnetic Reynolds numbers much larger than unity 
can be attained in precessing systems. In  particular, the system described below 
is felt to attain magnetic Reynolds numbers near 20. These are insufficient for 
dynamo action in this system; however the existence of the device allows study 
of these high magnetic Reynolds number flows. 

In  this paper the problem of a rotating, precessing cylinder of fluid constrained 
by a magnetic field parallel to the rotation axis is worked in the limit of small 
precession rate. The theory includes resonance phenomena. (The free modes of 
the system are given in an appendix.) This work occupies §§ 2-5. 

Section 6 describes the experimental apparatus and gives the results of experi- 
ments in the range of the theory, as well as extending measurements beyond the 
range of theory. The experiments agree with theory in the appropriate range. 
No free dynamo has yet resulted, but the field is amplified by the system. 
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2. Formulation 
Consider a cylindrical container of length L and diameter D, containing an 

incompressible fluid of density p, kinematic viscosity v, electrical conductivity c 
and relative permeability 1. Suppose the cylinder to be rotating about its sym- 
metry axis with angular velocity w ,  and that a uniform magnetic field of strength 
B,, parallel to the rotation axis, is applied from the outside. Let the entire system 
precess with angular velocity Q < w about an axis inclined to the symmetry axis 
with an angle a. For simplicity one can take a = in, but in principle any a will do. 

Steady-state solutions will be sought valid in the multiple limit that 

E = ~v/wD', Em = l/ncwD2, C2 = B;/nw2D2p 

and R, = Q/w 

are all small. The smallness of the first three parameters allows a boundary-layer 
treatment, and the fourth parameter provides a linearization. 

If v and h represent the velocity and magnetic fields, and one non-dimen- 
sionalizes according to 

r = +Dr', v = &JDv', h = (Bo/4n) h', o = w2,  G? = Qk; (2.1) 

the dimensionless equations, in a co-ordinate system rotating with the precession 
rate, after dropping the primes, are 

( 2 . 2 )  i 
+ + v . V V + ~ R , ~ X V + V ~ - E V ~ V + C ~ ~ X V X  h = 0, 

h-EmV2h=Vx(vxh)  
V.V = 0 = V.h. 

The dimensionless numbers are those defined above, and a co-ordinate system 
in which the precession direction is 2 has been chosen. 

The boundary conditions for this set are: 

v = P x r  

n x (e, h) continuous 

h = V @ + k  as r+m. (2.3) 

Here C is the container fluid interface, given in a cylindrical co-ordinate system 
a s a  = 1, -LID < z < LIDandz = *LID, 0 < w 6 1. 

Solutions will be sought using a combined boundary-layer and amplitude 
expansion, e.g. for the velocity. 

(2.41 

where the tilde denotes a boundary-layer quantity, and the e's are functions of 
E ,  Em, C2, R, and LID, with the property 1 e2. They will be determined 
during the course of the analysis. It will be supposed a priori that el 9 R,, by 
analogy with the viscous resonance in which el N Rp E-3 and e2 N R,. 

Circumstances for which el - R, can arise. Such circunistances are analogous 
to large oblateness in a precessing spheroid in that pressure forces dominate and 

v = vo+€lvl+€2v2+ ...+ €,Q,+€,f,+ ...) 

el 
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the boundary layers do not markedly affect the flow. This case can be obtained 
from the solution to be derived by taking an appropriate limit. 

The zeroth-order solutions are v, = 2 x r, h, = 2 and a, = z .  Since the main 
thrust of this paper is directed toward understanding the steady-state response, 
the free modes of the system will be relegated to a brief discussion in the appendix. 

The steady parts of the expansion (2.4) are calculated in the following sequence: 
(1) the zero frequency free mode is found; (2) its boundary layers are calculated; 
(3) the associated hydromagnetic Ekman suction is calculated; and (4) the 
amplitude of the zero frequency free mode is calculated by matching the suctions, 
and departures from resonance, to the precessional force. 

3. The first-order interior solution 

to exp {i[st + m#]} are sought, one obtains 
The equations to O(el) are by definition homogeneous. If solutions proportional 

13-11 i 
i ( s  + m)vl + 22 x v, + 0% - EV2v,  - C2 a2h,/az2 = 0, 

i ( s  + m) h, - E,V2h, - av,/az = 0,  

V . V ,  = 0 = V.h, .  

The interior equations are obtained from (3.1) by setting E = En, = 0. 
The Poincarh force in the precessing co-ordinate system is 2RP 2 x (2 x r), and 

it will excite the solution for which s = 0 and m = 1. That restriction is imposed 
here. Other s and m are relegated to the appendix. 

Set s = 0 and m = 1 in (3.1). The second serves to eliminate h, in favour of v,. 
If u,, v,, w1 are the components of v1 in cylindrical (a, #, z )  co-ordinates, one can 
eliminate v, in favour of V, as: 

i a  
w1= --V,, 

A az J 
where h = 1 -a2C2, where a is the z wave-number. Putting (3.2) into the con- 
tinuity equation and applying boundary conditions gives the boundary-value 
problem in V,, 

I 
a 
az l -  
--V - 0 on z =  kLjD.1 

This has the solution 

(3.3) 

8 
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subject to the two conditions 

These form a coupled transcendental set to determine Tc and LID, and solutions 
exist only for discrete values of LID. For h = 1, the hydrodynamic case, these 
solutions are known, and for any LID one can come arbitrarily close to solving 
(3.5) by the appropriate choice of E and 1. In  physical systems arbitrarily close is 
close enough and one can consider (3.5) satisfied. The solution of (3.5) represents 
a resonance, and the aim of this paper is to discuss this resonance, and the 
behaviour of the fluid in the immediate vicinity of the resonance. In principle 
one must calculate all resonances. This is not necessary in practice. The resonant 
amplitude is known for h = 1 (Gans 1970). For this case the resonant amplitude 
goes like Z-8 for large 1. It is thus less than the non-resonant amplitude, which 
is O ( R p ) ,  for sufficiently large 1. One can make this clearer as follows. Let I, be the 
wave-number for which (3.5) is satisfied for some particular LID and C2 = 0. The 
generalized pressure V is then given by 

where Y(w, #, x )  are normalized eigenfunctions satisfying the first two of (3.3). 

(3.7) 
For sufficiently large Z, 

%A(U < R p .  

In the event that (3.7) holds, the solution will be called non-resonant; otherwise 
the solution will be called resonant. For C2 = 0,  LID = 1 corresponds to I = 1, 
and is the principal resonance. Potential resonances in the vicinity of LID = 1 
have amplitudes satisfying (3.7), and so by varying LID in the neighbourhood 
of 1, the smooth change between resonant and non-resonant configurations can 
be exhibited. The assumption that this holds for small but non-zero C2 as well 
provides a motivation for the modification of k and a to be described. The usual 
procedure of modifying the frequency, s, is unsuitable here, because the choice 
s = 0 is fixed by the choice of co-ordinate system. 

The nearly resonant problem near LID = 1 can be described as follows. Let 
k = + J3n + k,, a = in + czl and LID = 1 +f. Here k,, aL andf are all supposed to 
be small quantities, such that their products with el can be considered to be 
of second order. Equations (3.3) then reduce to 

- d3nk1 + 3na, + n4C2 = 0, 

cosa(1 +f) = 0. 

3( 1 + an2) El = J3 ar3C2, 

From the first two one obtains 

(3.9) 
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which are small for C2 small. The third equation introduces a term like Ekman 
suction, of O[max (f, C2)], which can be considered a t  the same time as Ekman 
suction. This approach is the same conceptually as that used by Busse in con- 
sidering the response to precession of an oblate spheroid (Busse 1968), considered 
t o  first order to be a sphere. The added complicatioiz of an 'effective oblateness' 
which is a function of C2 should not be allowed to obscure this point. As will 
become apparent in the boundary-layer analysis there is a strong analogy 
between cylinders with an aspect ratio near unity and spheroids of small 
oblateness. 

There remains the normal boundary condition on the magnetic field. A com- 
plete discussion requires consideration of the conductivity of the container and 
the nature of the fields in the container. To that end let the conductivity of the 
container be 8cr, and suppose the end plates to have thickness d. Magnetic 
boundary conditions on the sidewalls are of less importance, as will become clear 
later. 

The magnetic field in the end plates, el hE, satisfies 

($-%V2) hE = 0, (3.10) 

and the usual decomposition 

hE = V x (kYT) + V x V x (kYP), (3.11) 

can be used to simplify the representation. Here YT and YP are the toroidal and 
poloidal defining scalars and they satisfy the scalar equivalent of (3.10), 

a Em A (Yl', Yp) = 0. (@-F ) (3.12) 

The condition that the tangential components of the electric field be contin- 
uous across the boundary can be divided into two conditions, one involving YP 
only and the other YT only. The former represents the continuity of normal 
component of B, and the latter is a construct related to the gradient of current. 
Formally these are obtained by taking the sum and difference of the electric 
field conditions. For no-slip velocity conditions these are finally 

The comma-subscript notation will be used to denote differentiation of the 
defining scalars. 

A t  x = -t (L  + d) /D the end plate field must be fitted to an exterior potential. If 
this potential is denoted by 0, the boundary conditions are 

(3.14) 
8-2 
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Locally @ cc e-"Jl(kw) ei$, and the boundary conditions determine Yp as 

Y p  = (2. h),=+L,D cschp sinhp ( z  T;) 

--sinhp 1 ( z f y ) ) .  (3.15) 
k2 

Here p2 = Ic2 + iS/E,. 

By expanding in powers of pd/D one can show that 
The tangential fields associated with Y p  are given by the gradient of Yfi. 

(3.16) D 
2.h 

for small pd/D and so is bounded as pd/D-+ 0. 

values will be derived. On z = 

Before proceeding to the boundary-layer formulation, the tangential boundary 
L / D  

(3.17) 

I 

c i A  2 
u1 = A2_4 [; + h &] J,(kw) e@, 

h,, = 0 = h14, 
and on w = 1, 

- A  2 n + 1  D . 
{2kJ;(k)  + hJ,(k)} sin - 7r - z ea$, v1= __ 

h2-4 2 L  

* 2n+ h,, = - A  [T7rz] J,(k)sm- 
2 n + l  D I 

4. The boundary layers 

from the form on the curved sidewalls. The caps will be discussed first. 
The form of the boundary layers will be different on the flat caps of the cylinder 

On the upper cap, z = LID, let the boundary-layer dependent variables be 
proportional to 

exp [ - ~ - l ( g - z )  ++I. (4.1) 

The ' boundary-layer thickness ' is 6, supposed to be small compared to one, and 
required to have positive real part. The boundary-layer equations are then 

I ., ] (4.2) (i - E 6-2)  (C17 B,, @,) + 2( - b,, C,,O) + (q m, w - q &  C,,) = - C%-li;,, 

(i - Em h, = 6-1 V,, G1 = 0 = hlz. 

The two divergence conditions require the z components of 5, and <, to be 
t o  be zero. The zero and the z component of the momentum equation requires 
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magnetic diffusion equation can be used to eliminate GI in favour off,, and the 
tangential components of the momentum equation form the reduced boundary- 
layer equations: 

{(i - E 6p2) (i - Em k2) + C2 6v2} (G,, E l )  + 2(i -Em P2) ( - 6,) 6,) = 0. (4.3) 

The term in C2 arises from the fluid-container coupling caused by the penetra- 
tion of the field lines through the container wall. The characteristic equation 
for 6 is 

(i - E 6-') (i - E,,, P2) + C2 = & 2i(i - E, 8-2). (4-4) 

For C2 = 0 this leads to the usual Ekman layer. For non-zero C2 this can be 
solved exactly to give for 6 

c2 +iEm)2+-] 4EEm 
1 T 2  

(4.5) 

The 1 in parentheses is independent of that in front of the 2's. In  liquid metals 
E < Em and one can expand the radical in powers of E .  Doing this gives the 
approximate representations for the boundary-layer parameters : 

(4-6) 

iEE, 
6 2  x - viscous, 

C2 EC2 

Em( 1 T 2) + iC2' 
magnetic. S2x-iEm+-+ - 

1 T 2 (1 + 2) [Em(l  'F: 2) +iC2]'  

The viscous layer reduces to the Ekman layer when C2+0.  The magnetic 
boundary layer grows to fill the entire volume as C2+ 1; the boundary-layer 
technique does not work for C2 2 1. For C2 % Em, the viscous layer is purely 
imaginary at  the lowest order and appears not to decay. A further analysis shows 
an effective decay rate of (Em/E)g C-l% 1 so the boundary-layer approximation 
remains valid. 

The viscous boundary-layer parameters will be assigned subscripts 1 and 2 
and the magnetic parameters 3 and 4. The boundary-layer velocities and fields 
are then written 

A 

Cl = lZ A, exp { ( z  - L/D)/6, + i$}7 
p = l  

B, = Xi( -)"APexp{(z-L/B)/6p+iq3}, (4.7) 
ill, = EL, A, exp { ( z  - L/D)/6p + i+}, 
ill, = xi( - )" L, A,  exp { ( z  - h/D)/Sp + i$}7 

where L, comes from equation (4.2)) and is 

L, = S,(iS; - En&)-,. 

For p even one takes the upper sign in (4.6), and for p odd, the lower 



118 R. F.  Guns 

Application of the boundary conditions to (4.7) is a two-step process if the 
conductivity of the end plate is to be included. The toroidal field in the end plate 
must be assessed. One begins with the four boundary conditions 

\ Ul+G1 = 0)  

i 21, + G, = 0,  

K,, = Y;.,,+ (i/a) YT, 

K,, = (;/a) wz - YTm, 

where Yl' is the toroidal defining scalar introduced in $3.  These are used to 
eliminate the A,  in favour of the boundary values of YT. The fifth boundary 
condition is the boundary-layer equivalent of the second of (3.13), viz. 

(4.9) 

The A, are given by 

(4.10) 

1 1  
(ZL, + i21,)b - - ___ 

2L,-L, 2L,-L, 

2L,-L, W 

eVA, = 1 L3 

e@A,  = 1 L, 

where the superscript b denotes evaluation at the boundary. A,  and A ,  are 
obtained from A ,  and A ,  by interchanging L, and L, and L, and L,, respectively. 

The divergence of &/az is given by 

4 ~ ~ 1 a  1 C - {- -- (wA,) ( - )P+l a A,) .  ,=lsp maa 
(4.1s) 

This can be written as 

after some algebraic manipulation. The constants on the right-hand side have 
the respective orders Ekl, E$, EGg and E&&. The dominant term is thus the first. 
This (times 8)  is to be balanced against the right-hand side of (4.9), which is 

(4.13) 
- ( D / d ) Y T .  Hence 

YTN- 

The scaling rule (4.13) is not the obvious scaling one might expect from 
inspection of (4.9). That brief inspection would give YT N Sd/DS, where 6 is 
the boundary-layer thickness. Such an estimate would be correct in simpler 

Sd 
+,D' 
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hydromagnetic problemswhere there is only one boundary-layer scale. Examples 
are Hartmann flow, Hartmann flow with rotation and some axisymmetric 
problems. It is the lack of axisymmetry which gives rise to two boundary-layer 
scales which are not totally separated. Uncoupled double scales occur in this 
problem on the sidewalls where the rotation vector is parallel to the boundary. 
What the coupled boundary layers mean physically is that the magnetic field 
changes in the viscous boundary layer by O(EiE;l), so that one obtains 

Sd E* sa Y T  - __ 
D Em &viscous Em D ' 

Sd 1 rather than y.TN --. 
D L a g n e t i c  

In what follows Sd/E,D will be supposed small so that the toroidal field need 
not be explicitly considered. 

The sidewall layers are simpler because the zeroth-order field does not penetrate 
the sidewalls. Using the magnetic diffusion equation to eliminate 6,, and the 
divergence condition to force 4, to be zero leads to the characteristic equation 
for the boundary-layer parameter (3 

This quadratic in 6 2  can be solved exactly. The result separates into 

I iE 
l-ca 

(32 M -____ (1 + C2a2), viscous, 

iE,  EC2a2 
1 - , 5 1 2 ~ 2  + 1 2 7  

(32 %-- magnetic, 

(4.14) 

(4.15) 

and these are essentially independent of C2 for C2 < 1, and they are the boundary 
layers one would obtain by treating the momentum and diffusion equations 
separately. These two different types of boundary layers illustrate quite clearly 
the difference between strong-coupling caused by a poloidal-type field, and the 
weak coupling caused by a toroidal-type field. 

Let 8, represent the viscous boundary layer and (3, the magnetic. Substituting 
into the boundary conditions 

?ll+fil = 0, 

(4.16) 

(4.17) 
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The divergences of 8, and &, do not vanish, but produce the hydromagnetic 
analogue of Ekman suction. The magnetic divergence is matched by a second- 
order exterior potential, but the velocity divergence can only be matched by 
a second-order interior velocity field, as is the usual situation in problems of this 
nature. This velocity divergence joins the divergence associated with the 
'effective oblateness ' as defined in the previous section in the second-order 
interior boundary conditions. The divergences of (4.7) and (4 .17)  are 

5. The second-order problem 
The second-order interior fields satisfy inhomogeneous equations of the form 

of (3.1) with inhomogeneous boundary conditions. The sequence of operations 
leading to (3.3) produce the equations 

Rewriting the equations in terms of V, has moved the forcing term into the 
boundary conditions. The oblateness term has been denoted by w,. 

Y = Jl(kw) sin az ei$ 

satisfies the homogeneous equivalent of (5.1) for the correct values of k and a. 
This homogeneous equivalent is (3.3), and V, is proportional to Y. In order that 
(5.1) have a solution, then, the inhomogeneous terms must be orthogonal to Y. 
The condition that this be true is obtained by multiplying the first of (5.1) by 
Y* and integrating over the volume. Integrating by parts and making use of the 
boundary conditions gives the solvability condition in terms of the surface 
integrals 

The function 

s o=L/D 
0 =I Y?*i (h2-4 )G2dX-6  

w = l  

- 1 2 R . s  y*aei$&'. (5 .2)  

The symmetry properties of V,, V, and Y have been used to eliminate the integrals 
over z = -LID in terms of those over z = LID. 

€2 z=LID 

From equation (3.2), w1 is given by 

~ ~ l ~ = ~ ~ ~  = - 4irssin (+nf-a,) A ,  J1(&J3nw) &, (5 .3)  
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where A ,  is the (as-yet-undetermined) amplitude of V, and the specific situation 
LID = 1 + f has been taken. From (4 .7 )  e 2 8 ,  can be written 

- - 1 [-+-I s,-s3 a,-&, PYP,I,_,. (5.4) 

(5 .5)  

2 L 3 - L ,  L 4 - L ,  
The second of (4.18) gives 

i e , ~ ,  = [( 1 - i ) , / 2 ]  E*( 1 + an,) elA, J1 ( i 4 3 n )  sin $nz e@. 

An algebraic equation for €,A,  is obtained by substituting (5 .3 ) ,  (5.4), and 
(5.5) into ( 5 . 2 )  and performing the integrations. The Bessel function integrals 
can be found in Erdslyi et al. (1953, equations (7.1) (1) and (7.10)(49)). After 
some algebraic manipulation ( 5 . 2 )  becomes 

The amplitude Ale1 is limited by the terms in the wavy bracket on the left- 
hand side. These are of four types. The first term represents viscous divergence 
on the sidewalls. The second and third terms represent viscous divergence on 
the end plates. The fourth term represents the modification of the velocity 
divergence caused by the bending of field lines in the boundary layer and the 
fifth term represents the pressure forces arising from the effective oblateness. 
I f f  N 1 this term dominates and one obtains the leading term of the non- 
resonant expansion of V,, as expressed in ( 3 . 6 ) .  

The term P(,ud/D)+l as ,u(d/D)+O. It is otherwise complex, so that the 
expression (5.7) is not singular for E = 0, p $. 0. Physically this represents a drag 
on the magnetic field lies by the conducting boundaries so that relative motion 
between the fluid and the container wall is limited in the absence of viscosity 
when a magnetic field is present. 

For the purpose of evaluating (5.7) this effect is not important. For calculation 
F(,ud/D) is set equal to unity and the S, are replaced by their approximate 
representations (4.6), and only the leading terms in each expression is retained, 
leading to 

12846Rp 2 2 / 6 f - ( 2 / 3 -  1 ) E 4 + B C 2 + ( 5 4 3 +  1)iEg (5.7) € ,A ,  = -____-__~ 
~ ' ( ~ ~ + 4 ) J 1 ( & 1 / 3 ~ ) { [ 2  J 6 f - ( , / 3 - l ) E 4 + B C 2 ] 2 + ( 5 4 3 + 1 ) 2 E ) '  

where 

For C2 = f = 0 this reduces to the hydrodynamic results (Gans 1970). Note 
that B is negative, so that the effect of the magnetic field is to reduce the effective 
length of the container. For positive f there is a maximum in the function 
A,e,(C2).  This is not true for negative f, corresponding to an 'oblate' cylinder. 



122 R. F. Gans 

The analysis leading to this result has neglected non-linear terms of order E;. 

These are automatically orthogonal to @ and cannot affect the analysis. The 
non-linear terms are first important at order e!. The precession rate limit is 
then derived from the constant that 

Prom (5.8) one obtains R, < max {f*%, Ez, C2} 

f* = f -  ( 2 / 4  a1, 

15-81 

as the condition under which the linear theory can be expected to hold. Here 

is the ' effective oblateness ' . 

6. Discussion and experiment 
By taking advantage of the strong responses of rotating fluids to precession, it 

is possible to build a practical device which can sustain magnetic Reynolds 
numbers of the order of 20 indefinitely. The first such device successfully built is 
described below. Because of the stringent nature of the linearity condition (5.9), 
the device is not well-suited to test the theory, requiring very slow precession 
rates to maintain a linear response, even for f significantly different from zero. 
A second problem is the question of toroidal fields in the end plates. The estimate 
(4.13), using S N Q, d/D N & and Em N &, gives $T N $, which is not negligible. 
This, however, is an upper bound. First, any degradation of the surface by the 
molten sodium would reduce the effective S. The second reduction arises from the 
fact that l l f T ,  and the contributioiis to the suction arising from l l f T ,  are in part 
orthogonal to theintegrating function used in (5.2), so that they do not contribute 
in full strength. These two effects supply the rationale for attempting to compare 
the experimental results with the theory. That this attempt is successful indicates 
that the rationale is valid. (Note that this effect enters the coefficient multiplying 
C2, whereas f is a constant independent of 172. This conductivity argument is 
different from the later discussion regarding f. The results are not an example 
of compensating errors.) 

The real value, and the purpose, of the experiment is not the illumination of 
the linear theory, but exploration of possible high magnetic Reynolds number 
effects, in particular possible modifications of hysteresis effects observed in non- 
conducting fluids in spheroids (Malkus 1968) and cylinders (Gans 1969). The 
results reported here are in a sense preliminary, but the experiment is sufficiently 
novel to warrant reporting at  this time. 

The device in question is basically a stainless steel cylinder 25 em in diameter, 
filled with liquid sodium, which can be rotated about its symmetry axis at 
angular velocities up to 3600rev/min, and precessed about an axis a t  right angles 
to the symmetry axis at  angular velocities up to 50rev/min. Co-axial with the 
cylinder is a d.c. coil used to apply an axisymmetric field to the sodium. The 
container and coil are mounted on a rotating table driven by a variable speed 
electric transmission and floating on air bearings. 
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The details of construction of the cylinder are as shown in figure 1. The initial 
filling is conducted through port A. During this filling nitrogen is allowed to leak 
slowly through the system to minimize oxidation of the sodium. Before filling the 
entire system is thoroughly flushed with nitrogen. The valve B was held open 
during the filling operation, which took several minutes. After filling the port A 
was closed and the container spun up to 2400 rev/min. At this point operations 
could be stopped by allowing the sodium to freeze while the container continued 
to  spin, and this is the usual shut-down procedure. Since the sodium freezes under 
centrifugal force, this leaves a central core and allows access to the valve B and 
its controls. 

-%- 
FIGURE I.  Schematic section of the hydromagnetic cylinder. 

The sequence followed to prepare the device for an experiment is as follows. 
The device is spun-up cold and a small nitrogen pressure maintained. An insulated 
box is put over the cylinder and the field coils. A current of lOamps is passed 
through the field coil, heating the air space around the cylinder and melting the 
sodium in about half an hour. During the melting period the  temperature of the 
sodium is monitored with the thermocouple C. A thermocouple wound into the 
field coils monitors their temperature and a dial thermometer fitted into a hole 
in the insulated box monitors the air temperature. After melting the temperature 
is allowed to rise from the melting point of 98 "C, to 115 "C. 

At this point there is a nitrogen core passing through the entire device. To 
remove this the phenomenon of differential spin-up is utilized. The motor driving 
the cylinder is turned off and the system allowed to slow down to lOOOrev/min. 
Then the container is spun up 'impulsively' to its full rotation rate of 2400 or 
3600revfmin. This takes less than a second. The fluid behind the baffle spins up 
much more rapidly than the fluid in the test section, creating a differential 
centrifugal pressure driving fluid into the test section and gas, through the 
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valve B, out of the section. This is done twice, with an overpressure of 2-3 
atmospheres of nitrogen to prevent the formation of a vacuum core, 

The actual valve used in this device was tested in a plastic cylinder filled with 
water. It was only 15 cm in diameter and rotated a t  1800rev/min so the forces 
were much smaller. This procedure cleared essentially all of an air core from the 
test section in two repetitions. No method has yet been devised to measure 
whether or not the system works in the sodium. 

The position of the baffle D, which controls the length of the test section, is 
adjustable. With the sodium molten, cap screws covering the four bolts E are 
removed. The bolts E are withdrawn until the sockets P fit snugly against the 
end plate. The bolts E are then unscrewed and replaced with bolts of a different 
length. These are pushed back in and the cap screws refitted. This operation has 
been performed several times, and the average leakage is not more than 2OOg. 
The system is topped up through the port A after this operation. 

At present the instrumentation consists of two search coils, G, and a laboratory- 
made photo-electric torque meter through which the cylinder’s basic rotation is 
driven. The search coil signal is brought out of the container and off the rotating 
table through copper slip rings with copper-carbon brushes. By adding or 
bucking the signals from the two coils one can cancel odd or even harmonics. 

The torque-meter consists of two slotted wheels connected by a torsion bar. 
A light is passed through the pair into a photosensitive resistor and the change 
in resistance is measured. The slots are arranged such that 110 light can, pass when 
the torsion bar is untwisted. Different ranges of torque can be investigated by 
using different torsion bars. Only static calibration of this device has been possible 
and this is not very accurate. However, for the work done to date only relative 
torque has been important; the air drag on the container swamps any signal that 
would be obtained in a range accessible by linear theory. 

There is also a Bell Model 620 Gaussmeter in the laboratory with which one 
can investigate stray fields. This has not proved useful to date. In  addition 
a strobotach with a photopickoff device is available, allowing one to compare the 
phase of the search coil signal with the actual position of the container. 

The use of this experiment to clarify the theory developed in the first half of 
the paper is just barely possible. The dimensionless numbers E ,  Em and C2 are 
given by E = 1.1 x 10-7, 

Em = 1.3 x lop2, 

G2 = 1.956 x 1OP6I2, 

where I is the field coil current in amperes. The maximum I for which measure- 
ments have been made is 27 amperes. This gives C2 N 1-5 x and G3 N 6 x 1 0 - 5 .  
Thus i f f  = 0,  the maximum precession rate according to (5.9) is 0*2rev/min. 
E* - 8 x giving a maximum precession rate of 0.03 rev/min. The trans- 
mission was not sufficiently sensitive to attain such low precession rates. The 
best that was attained was a precession rate of 0.133 rev/min. 

To determine f absolutely one must be able to machine to an accuracy of 
1 part in 104. The laboratory device was not built to such a tolerance, and even 
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were such tolerances attainable, centripetal deformations are of this order. Thus 
one cannot obtain f a priori. However, f controls both the amplitude and the 
shape of the curve of As, vs. C2, so that if one can find a single f which matches 
both, one can look at the data in the light of (5.8) and see if the f chosen is 
reasonable in that context. 

The sign of f is critical. The secondary resonance phenomenon described 
following equation (5.6) is possible only for f > 0. Figure 2 shows Asl/Rp as 
a function of B using the values given above, for f = 0, & 6 x The difference 
among the curves is striking. 

/ /+ 
/+ 

0 500 

B, gauss 

FIGURE 2. Response ws. applied magnetic field for f = 0 (solid line). f = 6 x 10-3 (pluses) 
andf = - 6 x (minuses). Thef = 0 curve is reduced by a factor of 10. 

One measures the electric field induced in the two search coils. This is propor- 
tional to As1. For a fixed rotation rate, this quantity, divided by the precession 
rate, is a function of the applied current 1 only. One can then build up a set of 
data by running the experiment at different precession rates and plotting the 
signal divided by the precession rate as a function of the current. 

Misalignment of the main coil produces a signal of the same type a,s the 
theoretical response, but this signal is independent of precession rate. The coil 
is not securely attached to the rotating table and the misalignment can change 
from run to run, introducing large error bars on the data. These errors can be 
reduced drastically by accepting only the intersection of the various points at  a 
given current strength. 
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A consistent picture of this kind can only be obtained by discarding all data 
with precession rates greater than or equal to 0*194rev/min. There remain 
31 points taken at  5 precession rates between 0.133 and O.l82rev/min. 

The data are expressed in terms of the peak-to-peak output voltage of the 
search coil-filter system, times the quarter period of precession in seconds, 
divided by the field coil current in amps. Denoting this quantity by 6, one has 

where e is the output of the search coils per unit magnetic field in volts/gauss, and 
the field coil produces 23 gauss/amp at  the end plates. The number e is a function 
of the apparatus, and 1 ah. $/a$ I is a function of the theory. 

For the singly-periodic response 

and i,, must be included to give a correct result. This is because that emux is 
O ( E i )  and E i  = 0-114 is not negligible compared to 1 for the experiment. The 
quantity h,  can be obtained from equation (5.8) by replacing 6, by L,6,, S2 by 
L, S2, 6, by L, 6, and S, by L4 6,. After manipulation one can write 

1 

Jc2 iE)” 112 
K,, M __ - ( 3 4 3 4  v:+--E,(l -i) @.pz5. 

6 4 3  E m  

(E/E,): = 0.0029, and so only the second term is important. The singly periodic 
magnetic field is then 

ehls + e,kL = - Re($.rr2[1 - d+ &‘r,/Em( 1 - i)] Acl J,(443n a) ei9}. (6.3) 

Substituting the dimensionless numbers into (5.7) gives Ae, 

5.27172, 
= 4.90f- 1 . 8 5 ~  10-512-2*43x 10-4+3.21ix lo-,‘ 

Each search coil consists of 24,000 turns wound with an inside radius of 
0.85 cm and an outside radius of 2.15 cm. At 60Hz it  produces an output of 
0.623V/G. The measurement is of the peak-to-peak signal of two such coils, 
introducing a factor of four. A filter used to reduce noise and higher harmonics 
reduces the signal introducing a factor of 0.097. Thus e = 2.51 V/G & 5 %. At 
the location of the search coils J,(ka),  = 0-558, is a maximum. Combining all 
the parameters gives 

& =  (6.5) ~~- 0.135 
{[4+0j- 1-85 x 10-51~-  7.43 x 10-412- 1-03 x 10-51)t+ 5 % .  

Figure 3 shows a synthesis of the 31 data points retained, and the curve of 
8 vs. I for f = 6 x lo-,. Within the 5 % error ‘introduced by uncertainties 
regarding calibration of the search coil-filter system agreement is demonstrated. 

The theoretical response as given includes the limitation of the resonance by 
viscous efflux from Ekman layers on the boundaries, mechanical departures 
from resonance, the change in the correct resonant length caused by the 
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magnetic field, and the magnetic efflux from magnetic Ekman layers. All of 
these phenomena are necessary to produce the theoretical curve of figure 3. The 
non-linear results follow. 

In  the purely hydrodynamic case the first departure from the steady-state flow 
given by the linear theory is a set of vortices which are generated near the axis 
of the flow, ejected to some two thirds of the radius where they remain for many 
rotation periods before collapsing again to the centre. These have been observed 
in both resonant and non-resonant containers. The axis of no velocity pitches 
about. From one to four of these vortices can exist at  once. 

4 

10 20 30 
Current, amp 

FIGURE 3. Field parameter ws. applied field current. Theory and experiment. The working 
fluid is sodium and the rotation rate is 3600 rev/min. 

In  the corresponding hydromagnetic case time-dependence of the search coil 
signal is observed. A useful analysis of this time-dependence has not yet been 
made because the problem of time-dependent noise has not yet been resolved. 
This appears to be a fruitful path for inquiry, however, especially in view of the 
complete lack of understanding of the hydrodynamic vortices. 

At higher precession rates the non-resonant hydrodynamic cylinder exhibits 
a hysteresis behaviour in its torque curve. This is felt to be similar to the same 
phenomenon reported for sufficiently oblate spheroids by Malkus (1968). A tenta- 
tive explanation for cylinders in terms of a subtle resonance phenomenon has 
been put forward by Gans (1969). Malkus (1968) suggests that this phenomenon 
may be a promising lead toward uncovering a dynamo mechanism. 
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Figure 4 shows the torque vs. precession rate curves for water in the device 
described above at  3600rev/min for LID = 1 (resonant) and L/D = 0.9 (non- 
resonant). The torque scale is arbitrary. The distinction between the non- 
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FIGURE 5 .  Torque 'us. precession rate at  LID = 0-9. The working fluid is sodium and the 
rotation rate is 3600 rcvlmin. The curves rcpresent constraining field of: -- , 0 gauss; 

, 230 gauss; -.-, 460 gauss. 

resonant and resonant curves is clear. Figure 5 shows the same curves in sodium 
constrained by 0,230, and 460 G fields with LID = 0.9. For this run the rotating 
pressure union through which the nitrogen is introduced failed so there was a 
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vacuum core in the test section. This is not felt to be important for these 
torque curves. 

At the point of transition the magnetic field measured by the search coils 
increased dramatically, jumping by about a factor of three. This amplification 
persisted when no field was applied and only the ambient field in the room was 
available. 

The upward transition point at  230 and 460 G was beyond the capacity of the 
apparatus and transition was forced by removing the field and then the torque 
was measured by turning the field back on. This is a secondary test of the stability 
of the upper branch of the torque curve. At no time did addition of the field force 
it down to its pretransition height. 

A secondary downward transition structure in the upper branch of the torque 
curve in the 0 and 230G cases is a new feature of the conducting fluid. Such 
structure has not appeared in any of the hydrodynamic torque curves generated 
when the original hysteresis phenomenon was discovered. Unfortunately calibra- 
tion problems prevent direct comparison of figures 4 and 5, so one cannot tell 
which, if either, of the torque domains corresponds to the hydrodynamic domain. 
It is also clear that the addition of a magnetic field moves the up and down 
transition points to higher precession rates. This can be qualitatively understood 
in terms of a general depressing effect of the field on the hydrodynamic response 
of precession. 

This work is based on a dissertation submitted to the Department of Geology 
at the University of California, Los Angeles. Thanks are due especially to my 
chairman, Prof. W. V. R. Malkus, and to Mr Paul Cox, who built the apparatus 
described above almost from scratch, and to Prof. F. H. Busse, who critically 
reviewed the manuscript. Support from the National Science Foundation under 
grant GA-849, and from the National Aeronautics and Space Administration 
under grant NGL-05-002-003 is gratefully acknowledged. 

Appendix. The free modes 
The free modes of the system are given by the solutions of the dissipation-free 

version of equations (3.1) for arbitrary s and m. The general analogue of the 
eigenva'lue problem (3.3) is 

aV 
a x  = 0 on z = ?LID. 

Here h = s +m - a2C2(s + m)-I, and the eigenfunctions are 

V = Jm(lCmn a) sin a, z exp [i(m$ + s,,,, t ) ]  ; 
9 
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clearly a, = S(Zn+ 1 )  nDIL. The remaining parameters s,, and k,, are deter- 
mined from the pair 

One can solve the first of (A3) formally for s+m, the frequency that an 
observer rotating with the container would see. The result, in terms of IC,,, is 

(A 4) 

For fixed n and m, there is an infinite set of k,,, {ktmn], and corresponding to 
each there are four values of a,,,, as the 5 sign on the left-hand side of (A 4) is 
independent of that on the right. Thus modes go both east and west, and no 
simple selection rule has appeared, capable of rationalizing the observed west- 
ward drift of the earth's magnetic field in terms of hydromagnetic waves. 

Analysis parallel to that used in $4 gives the boundary layers for a general 
s + m, modes as: 

C2 

C2 

on z =  +LID,  

In the second formula 

L s+m ern, 

REFERENCES 

BCSSE, F. 1968 J .  Fluid Mech. 33, 739. 
ERDELYI, A., MAGNUS, W., OBERHETTINGER, F. & TRICOMI, F. G .  1953 Higher Trunscen- 

GANS, R. F. 1969 FeZZowship Lectures. Summer Study Program in Geophysical Fluid 

GANS, R. F. 1970 J .  FZuid Mech. 41, 865. 
LOWES, F. J. & WILKINSON, I. 1968 Nature, Lond. 219, 717. 
MALRUS, W. V. R. 1968 Science, 160, 259. 

dental Functions. New York: McGraw-Hill. 

Dynamics : Woods Hole Oceanographic Institution, References no. 69-41. 


